次の4次正方行列\(A\)の固有値をすべて求めなさい。
\[
A =
\left(
\begin{array}{cccc}
2 & -1 & 0 & 1 \\
-1 & 1 & 1 & 2 \\
0 & 1 & 0 & -1 \\
-1 & 2 & -1 & -1 \\
\end{array}
\right)
\]
固有値方程式は以下のようになる。
\[\begin{align}
&
\begin{array}{|cccc|}
2 – \lambda & -1 & 0 & 1 \\
-1 & 1 – \lambda & 1 & 2 \\
0 & 1 & – \lambda & -1 \\
-1 & 2 & -1 & -1 – \lambda \\
\end{array} \\
&=
\begin{array}{|cccc|}
0 & 0 & 0 & 1 \\
2 \lambda – 5 & 3 – \lambda & 1 & 2 \\
-\lambda + 2 & 0 & – \lambda & -1 \\
– \lambda^2 + \lambda + 1 & 1 – \lambda & -1 & – 1 – \lambda \\
\end{array} \\
&= –
\begin{array}{|ccc|}
2 \lambda – 5 & 3 – \lambda & 1 \\
– \lambda + 2 & 0 & – \lambda \\
– \lambda^2 + \lambda + 1 & 1 – \lambda & -1 \\
\end{array} \\
&= –
\begin{array}{|ccc|}
2 \lambda – 5 & 3 – \lambda & 1 \\
2 \lambda^2 – 6 \lambda + 2 & 3 \lambda – \lambda^2 & 0 \\
– \lambda^2 + 3 \lambda – 4 & 4 – 2 \lambda & 0 \\
\end{array} \\
&= – (2 \lambda^2 – 6 \lambda + 2)(4 – 2 \lambda) + (3 \lambda – \lambda^2)(- \lambda^2 + 3 \lambda – 4) \\
&= \lambda^4 – 2\lambda^3 + 7 \lambda^2 +16 \lambda – 8 \\
&= (\lambda – 1)^2(\lambda^2 – 8)
\end{align}\]
従って、固有値は、\(\lambda = 1 \ \mbox{(2重縮退)}, \pm 2 \sqrt{2}\)と求まる。
\[\begin{align}
&
\begin{array}{|cccc|}
2 – \lambda & -1 & 0 & 1 \\
-1 & 1 – \lambda & 1 & 2 \\
0 & 1 & – \lambda & -1 \\
-1 & 2 & -1 & -1 – \lambda \\
\end{array} \\
&=
\begin{array}{|cccc|}
0 & 0 & 0 & 1 \\
2 \lambda – 5 & 3 – \lambda & 1 & 2 \\
-\lambda + 2 & 0 & – \lambda & -1 \\
– \lambda^2 + \lambda + 1 & 1 – \lambda & -1 & – 1 – \lambda \\
\end{array} \\
&= –
\begin{array}{|ccc|}
2 \lambda – 5 & 3 – \lambda & 1 \\
– \lambda + 2 & 0 & – \lambda \\
– \lambda^2 + \lambda + 1 & 1 – \lambda & -1 \\
\end{array} \\
&= –
\begin{array}{|ccc|}
2 \lambda – 5 & 3 – \lambda & 1 \\
2 \lambda^2 – 6 \lambda + 2 & 3 \lambda – \lambda^2 & 0 \\
– \lambda^2 + 3 \lambda – 4 & 4 – 2 \lambda & 0 \\
\end{array} \\
&= – (2 \lambda^2 – 6 \lambda + 2)(4 – 2 \lambda) + (3 \lambda – \lambda^2)(- \lambda^2 + 3 \lambda – 4) \\
&= \lambda^4 – 2\lambda^3 + 7 \lambda^2 +16 \lambda – 8 \\
&= (\lambda – 1)^2(\lambda^2 – 8)
\end{align}\]
従って、固有値は、\(\lambda = 1 \ \mbox{(2重縮退)}, \pm 2 \sqrt{2}\)と求まる。